Estimated risk of radiation-induced lung cancer in paediatric patients following electron, photon and proton therapy

Camilla H Stokkevåg¹, Grete-May Engeseth¹, Kristian S Ytre-Hauge², Dieter Röhrich², Odd Harald Odland¹, Ludvig P Muren³, Marianne Brydøy¹, Liv B Hysing¹, Artur Szostak², Matthew B Palmer⁴, Jørgen BB Petersen³

¹ Dep. of Physics and Oncology, Haukeland University Hospital, Bergen, Norway
² Dep. of Physics and Technology, University of Bergen, Norway
³ Dep. of Medical Physics, Aarhus University Hospital, Denmark
⁴ Dep. of Radiation Physics, University of Texas MD Anderson, TX, USA

PTCOG 2014, June 13th
Shanghai
Introduction

Radiation induced secondary cancer following cranio-spinal irradiation of paediatric patients

- Cranio-Spinal Irradiation (CSI) remains an important technique in the management of medulloblastoma, a common childhood cancer disease

- Young cancer patients are more susceptible to radiation carcinogenesis and calls for models for secondary cancer induction particularly tailored to paediatric patients

- In addition to the age dependence, secondary cancer risk is influenced by dose-level and heterogeneity, as well as gender and type of tissue irradiated

Our objective was to estimate organ specific radiation induced cancer risk after electron, photon and proton radiotherapy, and we will here focus on the results for a female and male paediatric patient
Treatment planning procedures

- CSI plans* were created on CT images (in prone position) for six patients (VMAT for two cases only)

- Treatment plan techniques:
 - Conformal photons
 - Electrons and photons combined
 - Volumetric arc therapy (VMAT)
 - Double scattering (DS) protons
 - Intensity-modulated proton therapy (IMPT)

- Standard risk medulloblastoma: 23.4 Gy(RBE) to brain and spine

- Vertebrae included in target volume for proton plans

- Common field configuration,
 - exception: VMAT technique with continuous arcs from 275-85°

*Eclipse, Varian Medical Systems, Palo Alto, CA, USA

Field setup: Two posterior spinal fields and two oblique cranial fields

Age specific target volume for proton techniques: Vertebrae included for paediatric patients in order to prevent asymmetric growth. [Giebeler et al 2013]
We analysed the risk of radiation-induced cancer for organs either in or near the spinal fields where the different dose-response scenarios were expected to have much impact: lungs, stomach, colon, liver, thyroid, bladder, breast, prostate.

To cover a range of possible dose-risk relationships, we included:

- Linear No Threshold (LNT)
- Plateau response above 4.5 Gy [Hall, 2003]
- Competition model [Dasu, 2005] accounting for cell killing vs induction of carcinogenic mutations
- Organ specific linear-exponential response obtained from fit to Hodgkin’s patient statistics [Schneider, 2005]

Organ Equivalent Dose (OED) concept: a dose-volume distribution can be converted into a single measure (in units of Gy) representing imposed risk on a relative scale.
Secondary Cancer Risk Analysis

Patient- and organ-specific risk coefficients estimated from the BEIR VII report*

<table>
<thead>
<tr>
<th>Lifetime Attributable Risk coefficient R per 1000 persons [Gy⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure age</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Stomach</td>
</tr>
<tr>
<td>Colon</td>
</tr>
<tr>
<td>Liver</td>
</tr>
<tr>
<td>Lungs</td>
</tr>
<tr>
<td>Bladder</td>
</tr>
<tr>
<td>Thyroid</td>
</tr>
<tr>
<td>Breast</td>
</tr>
<tr>
<td>Prostate</td>
</tr>
</tbody>
</table>

Life Attributable Risk of cancer incidence: \(LAR = OED \times R(\text{exposure age}, \text{sex}, \text{tissue}) \)

For absolute risk estimates the preferred models for age- and sex-dependent site-specific solid cancer from the BEIR* VII report has been used in combination with the four dose-response models

- Elevated risks for children compared to adults
- Gender variations

*Board on Biological Effects of Ionizing Radiation, 2006
Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy

- Life attributable risk of cancer incidence for six paediatric CSI patients
- Accumulated risk in organs either in or near the spinal fields were about six times higher for the conventional photons and electrons compared to the proton techniques
- The lungs and the thyroid contributed the most to the total risk from all techniques in the patient population

Life attributable risk of cancer incidence for six paediatric CSI patients stratified by technique.

weighted 2:1 for male:female

Stokkevåg et al, Acta Oncol 2014 (in press)
Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy

- OEDs for the proton techniques were in general significantly lower than for the photon and electron techniques, typically 4-8 times lower.

- Uncertainty in the LAR measure is significant: Nominal values compared in favour of the proton techniques for all patients and all organs included.

- Differences between female and male patients observable.

Representative results: Colon OED and LAR grouped by technique. Patient sequence from left to right: female: 5 y, 7y, 8y, male: 8y, 8y, 11y. [95% conf. interval]

Stokkevåg et al, Acta Oncol 2014 (in press)
Female 8 years, results for the lung: VMAT, conventional photons, electrons, DS protons, and IMPT

- The proton plans generally achieved lower lung doses compared to the photon and electron techniques. The volumes receiving doses below 10 Gy were significantly reduced with the proton techniques.

- Lower risks for the proton techniques for all dose-response models considered: 3-8 times higher risk from VMAT compared to proton techniques.

- Higher risks for female patients: 2.3 times higher (scales as risk factor).

Neutron doses estimated from Taddei et al, Phys Med Biol 2009
Results

Life attributable risk of cancer incidence using a linear exponential model

- Higher risks for the female patient relative to the male patient, much due to the higher susceptibility for female thyroid and lung cancer

- For the female patient, the LARs were 13 times higher with both photon techniques compared to the proton techniques

- Reduced doses to the thyroid by using electrons contributes to reduced LAR for the female patient by employing electrons

*Risk relative to IMPT: 13:13:8:1:1
*Risks relative to IMPT: 9:8:8:1:1

*Neutron doses estimated from Taddei et al, Phys Med Biol 2009
Conclusive remarks

- The proton techniques compared favourably with respect to LAR of radiation-induced cancer by all models with higher risks for the female than for the male patient.

- Male 8 years: Inherent differences in total LAR between electrons, conformal photons and VMAT were minor.

- Female 8 years: The LAR from the electron technique was somewhat lower compared to photons and VMAT.
Thank you!

Grete-May Engeseth¹, Kristian S Ytre-Hauge², Dieter Röhrich², Odd Harald Odland¹, Ludvig P Muren³, Marianne Brydøy¹, Liv B Hysing¹, Artur Szostak², Matthew B Palmer⁴, Jørgen BB Petersen³

¹ Dep. of Physics and Oncology, Haukeland University Hospital, Bergen, Norway
² Dep. of Physics and Technology, University of Bergen, Norway
³ Dep. of Medical Physics, Aarhus University Hospital, Denmark
⁴ Dep. of Radiation Physics, University of Texas MD Anderson, TX, USA