Craniospinal Irradiation Treatment Planning Study for Spot Scanning Proton Therapy

A. Tasson, C. Beltran, N. Laack, S. Childs, E. Tryggestad, T.J. Whitaker
Mayo Clinic Dept. of Radiation Oncology
Rochester, MN
Planning Criteria

• 18 Patients (8 under 10 yo)
• Prescription:
 ➢ 3600cGy in 20 fx
 ➢ 2340 in 13
• Normalization:
 ➢ 98% of CTV receives 100% Rx dose
Study of Two Targets

All patients

Thecal sac + brain to 2340cGy

Patients under 10 yo

Thecal sac + brain to 2340cGy

Vertebral bodies to 2100cGy
Matching the fields

• Match area achieved by stepping down dose over 9cm.
Without Robust IMPT

This is the lower spine portion of a CSI treatment. The Blue is the CTV (thecal sac), the orange are the OTVs. There is an OTV_inf_100% (the larger orange), OTV_inf_90% (the small orange segment next to OTV_inf_100%), OTV_inf_80% etc. The purple is the STV for the inferior spine field, STV_inf. There would be a corresponding “STV_mid” with OTV_mid_xx%. The STV_mid and STV_inf would overlap along with the OTVs to make a smooth gradient.
Beam Arrangement

Posterior Beams

- 1 posterior beam per isocenter

Oblique Beams

- 2 posterior oblique beams per isocenter
- 45 degree obliques used when possible
- 1 side would be treated per day
 - Alternating schema: left side one day, right side the next
Bolus / Range Shifter

- Lowest energy protons we get from synchrotron: 72MeV (4cm deep in water)
- We need to pull back the protons for our shallower target.

- 4.5cm range shifter in tx nozzle
- 5cm thick slab of bolus under the patient
Large Tails have a major influence on the dose distribution.
Robustness Considerations

• 3mm shift of all isocenters
 ➢ x, y, and z shifts each considered independently
• 3% range uncertainty
 ➢ 3% increase in HU applied to each pixel
 ▪ Makes tissue more dense, protons won’t travel as far
 ➢ 3% decrease in HU applied to each pixel
 ▪ Makes tissue less dense, protons will travel farther
Robustness Plots 101

Structure: Right Retina
Plan type: Range Shifter, Vertebral bodies, Obliques
Uncertainty: 3mm translation in z direction
Robustness Plots 101

- Structure: Right Retina
- Plan type: Range Shifter, Vertebral bodies, Obliques
- Uncertainty: 3mm translation in z direction

Mean of all the original plans, robustness not considered
Robustness Plots 101

Structure: Right Retina
Plan type: Range Shifter, Vertebral bodies, Obliques
Uncertainty: 3mm translation in z direction

Mean of all the original plans, robustness not considered

1 standard deviation from the mean of all original plans
Robustness Plots 101

Structure: Right Retina
Plan type: Range Shifter, Vertebral bodies, Obliques
Uncertainty: 3mm translation in z direction

Mean of all the original plans, robustness not considered

1 standard deviation from the mean of all original plans

1 standard deviation of original plan with shift z + 3mm
Robustness Plots 101

Structure: Right Retina
Plan type: Range Shifter, Vertebral bodies, Obliques
Uncertainty: 3mm translation in z direction

Mean of all the original plans, robustness not considered
1 standard deviation from the mean of all original plans
1 standard deviation of original plan with shift z + 3mm
1 standard deviation of original plan with shift z - 3mm

Thanks to Erik Tryggestad, T.J. Whitaker
DVH’s - Esophagus

Thecal Sac Plans

Vertebral Body Plans

Mean DVH for ROI: esophagus

- BTP +/- 1sig; N=18
- BTO +/- 1sig; N=18
- RTO +/- 1sig; N=18
- CSI Photon 2340 +/- 1sig; N=11

Mean DVH for ROI: esophagus

- BVP +/- 1sig; N=6
- BVO +/- 1sig; N=6
- RVO +/- 1sig; N=6
- CSI Photon 2340 +/- 1sig; N=11
Mean Doses
(2 field bolus plans)

<table>
<thead>
<tr>
<th></th>
<th>Mean Doses (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean (SD)</td>
</tr>
<tr>
<td>CTV</td>
<td>3682 (15)</td>
</tr>
<tr>
<td>Retina</td>
<td>231 (142)</td>
</tr>
<tr>
<td>Cochlea</td>
<td>2286 (174)</td>
</tr>
<tr>
<td>Scalp</td>
<td>2661 (423)</td>
</tr>
</tbody>
</table>
CTV
Cochlea
Retina
Thank you for your time.

Questions?