Proton Therapy for tumors of the skull base - RESULTS

Eugen B. Hug, MD
Medical Director,
ProCure Proton Therapy Centers, NY
Petroclival Chondrosarcoma: 68 – 72 Gy(RBE) at 1.8 or 2.0 Gy(RBE)

GTV: 70.2 Gy(RBE) / 1.8 Gy (RBE)
OAR constraints: Brainstem Surface 64 Gy(RBE), Brainstem Center 53 Gy(RBE)
Skull Base Chordoma: 72-76 Gy(RBE)

67 y.o. F
s/p 2 major subtotal resection
Involvement of entire clivus, brainstem compression
extracranial extension
Posterior pharynx

GTV: 74 Gy(RBE) / 1.8 Gy (RBE)
CTV: 54 Gy(RBE)

OAR constraints: Brainstem Surface 64 Gy(RBE), Brainstem Center 53 Gy(RBE), Optic Nerves and Chiasm 60 Gy(RBE)
Skull Base Chondrosarcomas: Proton series

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Radiation</th>
<th>Mean dose</th>
<th>3-yr LC</th>
<th>5-yr LC</th>
<th>10-yr LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munz. MGH 1999</td>
<td>229</td>
<td>PT, RT</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hug, LLUMC 1999</td>
<td>25</td>
<td>PT, RT</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, LLU '02</td>
<td>58</td>
<td>PT, RT</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noel, CPO 2004</td>
<td>26</td>
<td>PT, RT</td>
<td>67</td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Schulz-E., GSI 2007</td>
<td>54</td>
<td>Carbon, RT</td>
<td>60*</td>
<td>89</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Ares, PSi 2009</td>
<td>22</td>
<td>PT</td>
<td>68.4</td>
<td></td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>

*at 3.0 CGE per fraction
Skull Base Chordomas: Proton

<table>
<thead>
<tr>
<th>Center</th>
<th>Year</th>
<th>Pts</th>
<th>Tx</th>
<th>Mean dose</th>
<th>3 y Local control</th>
<th>5 y Local control</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUNZENRIDER</td>
<td>MGH</td>
<td>1999</td>
<td>290 PT, RT</td>
<td>76</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>TERAHARA</td>
<td>MGH</td>
<td>1999</td>
<td>115 PT, RT</td>
<td>69</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>HUG</td>
<td>LLUMC</td>
<td>1999</td>
<td>33 PT, RT</td>
<td>71</td>
<td>67</td>
<td>59</td>
</tr>
<tr>
<td>NOEL</td>
<td>CPO</td>
<td>2005</td>
<td>100 PT, RT</td>
<td>67</td>
<td>86 (2 y)</td>
<td>53 (4 y)</td>
</tr>
<tr>
<td>SCHULZ-E</td>
<td>GSI</td>
<td>2007</td>
<td>115 Carbon RT</td>
<td>60*</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>ARES</td>
<td>PSI</td>
<td>2009</td>
<td>42 PT</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protons: No large scale prospective or multicenter studies available

Contouring / Dose Prescription:

Similar Volume Definitions (GTV, CTV)

Similar Dose Prescriptions:

- 1.8 or 2.0 fraction dose
- GTV 66-78 Gy(RBE) total dose – MGH up to 82 Gy(RBE) (selective only)
Treatment Results in Skull Base Chordoma

<table>
<thead>
<tr>
<th>Authors</th>
<th>N</th>
<th>Median Total Dose</th>
<th>Median f/u (y)</th>
<th>Local Control Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catton et al.</td>
<td>24</td>
<td>50.0</td>
<td>5.2</td>
<td>23 (3-y) 15 (5-y)</td>
</tr>
<tr>
<td>Romero et al.</td>
<td>18</td>
<td>50.1</td>
<td>3.1</td>
<td>17</td>
</tr>
<tr>
<td>Forsyth et al.</td>
<td>39</td>
<td>50.0</td>
<td>8.3</td>
<td>39 (3-y) 31 (5-y)</td>
</tr>
<tr>
<td>Magrini et al.</td>
<td>12</td>
<td>58.0</td>
<td>6.0</td>
<td>25 (3-y) 25 (5-y)</td>
</tr>
<tr>
<td>Proton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munzenrider et al.</td>
<td>169</td>
<td>66-83</td>
<td>3.4</td>
<td>73 (3-y) 54 (5-y)</td>
</tr>
<tr>
<td>Noel et al. (CPO)</td>
<td>100</td>
<td>67.0</td>
<td>2.6</td>
<td>86 (2-y) 54 (4-y)</td>
</tr>
<tr>
<td>Igaki et al. (Tsukuba)</td>
<td>13</td>
<td>72.0</td>
<td>5.8</td>
<td>67</td>
</tr>
<tr>
<td>Ares et al. (PSI)</td>
<td>42</td>
<td>73.2</td>
<td>3.2 (Mean)</td>
<td>81</td>
</tr>
<tr>
<td>Helium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro et al.</td>
<td>53</td>
<td>65.0</td>
<td>4.3</td>
<td>63</td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shults-Erter et al.</td>
<td>96</td>
<td>60.0</td>
<td>2.6 (Mean)</td>
<td>81 (3-y) 70 (5-y)</td>
</tr>
<tr>
<td>NIRS</td>
<td>36</td>
<td>48-60.8</td>
<td>4.6</td>
<td>81 (SE ±0.8)</td>
</tr>
<tr>
<td>NIRS</td>
<td>27</td>
<td>60.8</td>
<td>3.8</td>
<td>94 (SE ±0.6)</td>
</tr>
</tbody>
</table>

From: Kamada, ESTRO Teaching Course 2012
Scanning-beam Proton Therapy for Chordomas and Chondrosarcomas of the Skull base

Ares, Goitein, Hug et al. - PSI IJROBP 2009 Nov 15;75(4)

• N = 64 patients (Oct-98 Nov-05)
 – Chordoma 42 (65%)
 Chondrosarcoma 22 (34%)

• Mean age 44.5 years
• Mean follow-up 38 months (14 - 92 months)

• Prescription dose (mean) (at 2 CGE per frct.).
 • Chordoma (Ch) 73.5 CGE (range 67 - 74)
 Chondrosarcoma (ChSa) 68.4 CGE (range 63 - 74)

• GTV volume: mean 25.8 cc (1.5 - 100.5 cc)
(Ares et al. cont.)

Actuarial Local Control

<table>
<thead>
<tr>
<th>Condition</th>
<th>3 years</th>
<th>5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordomas</td>
<td>87 %</td>
<td>81 %</td>
</tr>
<tr>
<td>Chondrosarcomas</td>
<td>94 %</td>
<td>94 %</td>
</tr>
</tbody>
</table>

Local control

P = 0.25
Disease Spec. Survival

Chordomas 90% 81%
Chondrosarcomas 100% 100%

Disease Specific Survival

(Ares et al. cont.)
Radiation induced toxicity (CTCAE v3.0)

- **High grade late toxicity (all Ch) → 4 pts (6%)**
 - optic pathway
 - G 4 → 1 patient (unilat. blindness)
 - G 3 → 1 patient (unilat. visual deficit)
 - neurologic
 - G 3 → 2 patients (sympt. brain necrosis)

Actuarial Toxicity-Free Survival: 94%
Prognostic Factor: Tumor Size and Local Control

Improved LC for “smaller” size

- LLUMC: < 25 ml vs. > 25 ml (100% vs. 56%) \(p = \text{signif.} \)
- CPO: <29ml vs. > 29ml \(p = \text{signif.} \)
- PSI: > 25 ml vs. > 25 ml (90% vs. 74%) \(p = \text{signif.} \)
- MGH: < 70 ml vs. > 70 ml (disease-free survival) \(p = \text{signif.} \)
- LBL: < 20cc vs. <35 vs. > 35 cc (80% vs. 33%) \(p = \text{signif.} \)

Loma Linda UMC Analysis

J Neurosurg. 91:432-439, 1999
Prognostic Factor: Tumor Size and Local Control

Improved LC for "smaller" size:
- LLUMC: < 25 ml vs. > 25 ml (100% vs. 56%)
- CPO: < 29 ml vs. > 29 ml
- PSI: > 25 ml vs. > 25 ml (90% vs. 74%)
- MGH: < 70 ml vs. > 70 ml (disease-free survival)
- LBL: < 20 cc vs. < 35 cc vs. > 35 cc (80% vs. 33%)

Note:
1) 5-year LC for ‘small’ lesions: approx. 85 – 95%
2) There is no evidence in the neurosurg. literature that local control is better following gross total resection compared to “small’ residual

Hug, Laredo, et al.
J Neurosurg. 91:432-439, 1999
Skull Base Chordomas: Importance of high-dose

Tumor Compression of Critical Structures = under-dosage of GTV

Influence of tumor compression on local control

J Neurosurg. 91:432-439, 1999

Orsay/France:
Noel, et al.
Acta Oncol 2005;44(7):700-8

- 95% GTV encompassed by 95% Isodose (p=0.01)
- Minimal dose < 56 Gy to GTV (p=0.04)
Skull Base Chordomas: Importance of high-dose

Paul Scherrer Institute:
5/6 failures with brainstem compression p=signif.

Mass. General Hospital
15/26 failures with BS or OC compression p=signif.
Skull Base Chordomas: Importance of high-dose

- The majority of skull base tumors require 70-76 Gy(RBE) GTV-dose
- This exceeds all OAR constraints of brainstem, optic nerves, optic chiasm and most other structures
- Underdosage of tumor causes failures (approx. 2/3 of failures)
- Goal: minimize “GTV shoulder” on DVH

- Hence: surgical decompression of OAR’s recommended
- Hence: only high OAR constraint will permit adequate tumor dose in many / most patients
Skull base Chordomas and Chondrosarcomas: RS and Cyberknife LC data

<table>
<thead>
<tr>
<th>Study</th>
<th>Chordomas</th>
<th>Chondrosarcomas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>5-y LC</td>
</tr>
<tr>
<td>Krishan, 2005</td>
<td>25</td>
<td>32%</td>
</tr>
<tr>
<td>Martin, 2007#</td>
<td>18</td>
<td>63%</td>
</tr>
<tr>
<td>Hasegawa, 2007</td>
<td>30</td>
<td>72%</td>
</tr>
<tr>
<td>Henderson, 2009</td>
<td>18</td>
<td>59%</td>
</tr>
<tr>
<td>Liu, 2008</td>
<td>28</td>
<td>21%</td>
</tr>
<tr>
<td>Kano, Pittsburg ,2011</td>
<td>71</td>
<td>66%</td>
</tr>
<tr>
<td>Koga, U. Tokyo, 2010</td>
<td>14</td>
<td>combined Ch +ChS 43% 5-yr LC</td>
</tr>
</tbody>
</table>
Recent publication on photon- FSRT for Chordomas

Photon-based Fractionated Stereotactic Radiotherapy for Postoperative Treatment of Skull Base Chordomas

Darlene M. Bugoci, MD,* Michael R. Girvigian, MD,* Joseph C.T. Chen, MD, PhD, †
Michael M. Miller, MD,* and Javad Rahimian, PhD*
(Am J Clin Oncol 2012;00:000–000)

- Dept. of Rad. Onc, Kaiser Permanente, Los Angeles, CA
- OBJECTIVES:: Postoperative high-dose fractionated stereotactic radiotherapy (FSRT) as an alternative to proton radiotherapy (RT).
- FSRT between 2002 - 2009,
- 12 patients with skull base chordomas. IMRT and IGRT FSRT
- **Median dose of 66.6 Gy** (range, 48.6 to 68.4 Gy), at 1.8 Gy, prescribed to the 90% isodose line.
- Median follow-up 42 months.
- 5-year Overall survival 76.4%
- **Progression-free survival 46.9% at 2-years and 37.5% at 5-years.**
- Author’s CONCLUSIONS: “FSRT resulted in promising overall survival results comparable with the published literature of particle therapy without significant complications. Our technique for treating skull base chordomas can be considered a safe and less costly alternative to proton RT.”

Note: Conclusion misleading. There is no salvage after failure. Patients will die of disease. Delay between LF and DoD about 2-3 years
What are the results comparing:

Particle Therapy vs. Stereotactic or conv. photons

5-year Local Control rates (%)

Dose Gy (RBE)

Particles

Protons
- Munzenrider 1999
- Ares 2009
- Hug 1999

C-Ions
- Schulz-Ertner
- Mizoe

Photons
- Bugoci 2012
- Romero 1993
- Zorlu 2000
- Debus 2002
What are the results comparing:

Particle Therapy vs. Stereotactic or conv. photons

Protons
- Munzenrider 1999
- Ares 2009
- Hug 1999

C-Ions
- Schulz-Ertner

Photons
- Bugoci 2012
- Romero 1993
- Zorlu 2000
- Debus 2002

Protons for small Chordomas and distant from OAR, Chondrosarcomas

5-year Local Control rates (%)

Dose Gy (RBE)
Long-term Side Effects of high-dose Proton Therapy for Skull Base Tumors:

The risks of severe (> Grade 3) side effects following high dose, precision RT depend on several variables:

Tumor size, tumor compression of normal brain, critical structure involvement, dose to normal tissues, number of prior surgeries, general medical risk factors (diabetes, HTN, smoking,), KPS

Rule of Thumb for Proton RT for Skull Base requiring > 70 Gy:

- Low-risk group: < 5%
- Mod.-risk group: 5-8%
- High-risk group: > 8 % - ?? *

* PT as last modality after multiple failures
High-Dose Proton Therapy to the Base of Skull:
Temporal Lobe Toxicity

B. Pehlivan, C. Ares, T. Lomax, E. Hug et al. IJROBP. 2012, 83(5):1432-40

PSI: 64 Skull Base Patients treated at (40 Chordoma, 22 Chondrosarc.)

7 pts. censored: Only 2 pts. With Gr. 3, and 5 pts. With Grade 1

Patient characteristics with G1 or G3 temporal adverse events

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Toxicity Grade</th>
<th>PT dose (Gy(RBE))</th>
<th>Overall F/U time (months)</th>
<th>LC</th>
<th>Dx of adverse event (months after PT)</th>
<th>Location temporal lobe change</th>
<th>Symptoms</th>
<th>Status MRI at last F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>74</td>
<td>22</td>
<td>yes</td>
<td>12</td>
<td>Bilateral</td>
<td>Impaired short term memory, desorientation</td>
<td>Stable with edema reduction</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>74</td>
<td>23</td>
<td>yes</td>
<td>19</td>
<td>Bilateral</td>
<td>Impaired short term memory, desorientation</td>
<td>Stable with edema reduction</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68</td>
<td>50</td>
<td>yes</td>
<td>35</td>
<td>Bilateral</td>
<td>N/A</td>
<td>stable on MRI resolution</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>74</td>
<td>21</td>
<td>yes</td>
<td>10</td>
<td>Bilateral</td>
<td>N/A</td>
<td>no change</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>74</td>
<td>61</td>
<td>yes</td>
<td>38</td>
<td>Left</td>
<td>N/A</td>
<td>no change</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>74</td>
<td>35</td>
<td>yes</td>
<td>31</td>
<td>Left</td>
<td>N/A</td>
<td>no change</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>74</td>
<td>21</td>
<td>yes</td>
<td>18</td>
<td>Right</td>
<td>N/A</td>
<td>increase</td>
</tr>
</tbody>
</table>

#: number; PT: proton-radiotherapy; F/U: follow-up; LC: local control; Dx: diagnosis; N/A: not applicable
High-Dose Proton Therapy to the Base of Skull: *Temporal Lobe Toxicity*

Table 3. Dose-volume values to 3 different neurological structures in relation with grade of CNS toxicity

<table>
<thead>
<tr>
<th>Grade Toxicity</th>
<th>D3 mean ± SD (Gy(RBE))</th>
<th>D2 mean ± SD (Gy(RBE))</th>
<th>D1 mean ± SD (Gy(RBE))</th>
<th>D0.5 mean ± SD (Gy(RBE))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70 ± 5</td>
<td>71 ± 5</td>
<td>72 ± 5</td>
<td>73 ± 5</td>
</tr>
<tr>
<td>1</td>
<td>73 ± 5</td>
<td>74 ± 5</td>
<td>75 ± 4</td>
<td>76 ± 4</td>
</tr>
<tr>
<td>3</td>
<td>75 ± 1</td>
<td>76 ± 2</td>
<td>76 ± 2</td>
<td>77 ± 2</td>
</tr>
</tbody>
</table>

Right temporal lobe

<table>
<thead>
<tr>
<th>Grade Toxicity</th>
<th>D3 mean ± SD (Gy(RBE))</th>
<th>D2 mean ± SD (Gy(RBE))</th>
<th>D1 mean ± SD (Gy(RBE))</th>
<th>D0.5 mean ± SD (Gy(RBE))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50 ± 23</td>
<td>52 ± 23</td>
<td>56 ± 22</td>
<td>58 ± 22</td>
</tr>
<tr>
<td>1</td>
<td>67 ± 15</td>
<td>69 ± 12</td>
<td>73 ± 9</td>
<td>75 ± 7</td>
</tr>
<tr>
<td>3</td>
<td>71 ± 4</td>
<td>73 ± 3</td>
<td>75 ± 2</td>
<td>76 ± 2</td>
</tr>
</tbody>
</table>

Left temporal lobe

<table>
<thead>
<tr>
<th>Grade Toxicity</th>
<th>D3 mean ± SD (Gy(RBE))</th>
<th>D2 mean ± SD (Gy(RBE))</th>
<th>D1 mean ± SD (Gy(RBE))</th>
<th>D0.5 mean ± SD (Gy(RBE))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>53 ± 21</td>
<td>56 ± 21</td>
<td>59 ± 20</td>
<td>62 ± 19</td>
</tr>
<tr>
<td>1</td>
<td>57 ± 18</td>
<td>62 ± 15</td>
<td>67 ± 12</td>
<td>70 ± 9</td>
</tr>
<tr>
<td>3</td>
<td>68 ± 1</td>
<td>71 ± 0</td>
<td>74 ± 1</td>
<td>75 ± 1</td>
</tr>
</tbody>
</table>

Q: What is a „reasonable“ temp. lobe max. Dose Constraint, i.e. balancing toxicity risk with risk of failure?

• $D_2 \leq 70$ or 72 Gy (RBE)?

Temporal Lobe toxicity constitutes the most frequent high-grade adverse event in high-dose skull base treatments. Approx. 3-5 %

Challenge: No clear tolerance threshold defined by ANY group
PTV of GTV frequently includes medial temporal lobes

Rec.: limit approx. 2 cc to ≤ 72 Gy(RBE)
Proton Radiation Therapy for *Adenoid-cystic Carcinoma* of the Skull Base
Adenoid Cystic Carcinoma with skull base invasion

<table>
<thead>
<tr>
<th>Institution/Publication</th>
<th>Particle</th>
<th># Pts.</th>
<th>Dose</th>
<th>Follow-up</th>
<th>Local control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH Pommier</td>
<td>Protons</td>
<td>23</td>
<td>Median 75.9 GyE at 1.8-2.0</td>
<td>Median 64 m</td>
<td>5-yr 93%</td>
<td>Mature f/u</td>
</tr>
<tr>
<td>NIRS Phase II 9602</td>
<td>Carbon</td>
<td>126</td>
<td>57.6 GyE then 64 GyE</td>
<td>Approx. 48 m</td>
<td>5-yr 76%</td>
<td>69 pts short f/U 95% to 64 GyE</td>
</tr>
<tr>
<td>GSI Schulz-Ertner</td>
<td>Carbon</td>
<td>29</td>
<td>Median 16 m</td>
<td>4-yr 77%</td>
<td>short f/u</td>
<td></td>
</tr>
</tbody>
</table>

GTV: 72-74 Gy (RBE)
CTV: 60 Gy (RBE)
Adenoid-Cystic Carcinomas
with infiltration of the skull base

5-year Local Control (%)

Dose [Gy (RBE)]

Protons:
- Pommier et al. MGH, 2006

C-ions:
- Schulz-Ertner et al. GSI – U Heidelberg
- Tsuji et al. NIRS

Photons:
- Chen (UCSF, 2006)
- Historic data

Neutrons (Seattle): without
- with SB invasion
Proton Radiation Therapy for *Meningiomas* of the Skull Base and complex anatomic configuration
Proton-Radiotherapy for skull base tumors: **Benign meningioma**

Axial and coronal Gd-enhanced T1-wMRI

Spheno-orbital meningioma.
Spot scanning based Proton Therapy at PSI for Meningiomas – 5-year actuarial data

Weber et al. IJROBP Dec. 2011

• 39 patients,
• Proton Therapy between 1997 – 2/2010. (exclusively protons)
• Age: 3.2 – 76 years (3 pediatric pats.)
• Gender: M:F = 9:30

• Histology: 34 histologically proven, 5 radiographic Dx.
• Histology: WHO (2007): Grade I: 23(58%), II: 10(25%), III: 2(5%)
• Location: 32(83%) skull base, 7(17%) Non-skull base
Spot scanning based Proton Therapy at PSI for Meningiomas – 5-year actuarial data

Weber et al. IJROBP Dec. 2011

- **GTV:** range: 0.76 cc – 546 cc (mean: 56 cc)
- **PT:** fractionated, at 1.8-2.0 Gy(RBE)
- **Total Dose:** 52.2 – 68.4 Gy(RBE) (mean: 57.5)
- **Follow-up:** 6.2 – 147 months (mean: 63 months)

- **Local Control:** 33 pts., LF: 6 pts.
- **Overall Survival:** 6 pts. D, 4 pts. DoD
- **Late, high-grade Toxicity:** 5 pts.
Local control

LC: 85% at 5 years – 39 pts.

Weber et al. IJROBP Dec. 2011
Local control

LC: 85% at 5 years – 39 pts.

Benign Meningiomas: LC 100% (5-yrs.)

Grade II-III: LC ~60%

High Grade Toxicities: 3 pts. with optic neuropathy
<table>
<thead>
<tr>
<th>Institution/Publication</th>
<th>Particle</th>
<th># Pts.</th>
<th>Dose</th>
<th>Follow-up</th>
<th>Local control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSI/Heidelberg Combs 2010 Radiother Oncol 95(1)</td>
<td>Carbon</td>
<td>10 atypical anaplastic</td>
<td>18 GyE carbon boost 50.4 Gy photons</td>
<td>77 m median</td>
<td>5yr 86% for „primary RT“ = 6/8 patients</td>
<td>Statistical power of 5-yr rates(?)</td>
</tr>
<tr>
<td>PSI Weber (IJROBP 2011)</td>
<td>Protons</td>
<td>39 29 benign 10 atypical or malignant</td>
<td>53-58 GyE benign 60-66 GyE atyp or anapl.</td>
<td>55 m median</td>
<td>5-yr 100% benign 5-yr 58% atyp. or anaplastic</td>
<td></td>
</tr>
<tr>
<td>MGH Wenkel 2000; 84(5)</td>
<td>Protons</td>
<td>46 Benign only</td>
<td>Mean 59 Gy(RBE)</td>
<td>53 m median</td>
<td>5-yr 100% benign</td>
<td>10-yr LC 88%</td>
</tr>
<tr>
<td>MGH Hug (J Neuroonc. 2000; 48(2)</td>
<td>Protons and photons</td>
<td>31 15 atypical 16 malignant</td>
<td>< 60Gy></td>
<td>Mean 59 m</td>
<td>5-yr 38% atyp 5-yr 52% mal. 5-yr 80% with protons vs. 17% photons (signif.)</td>
<td>8-yr LC 19% atyp and 17% mal.</td>
</tr>
</tbody>
</table>
Patient: V.Y. 63 y.o. M; Hx of left sided weakness, sensory deficits, and neck pain

Preop. MRI 12/2012

Chordoma of C4 Vertebral body, extensive spinal cord compression, involvement of left vertebral artery
Chordoma of the Cervical Spine

Patient: 63 y.o. M; Postop. MRI 2/2013

Posterior approach: Laminectomy, Facetectomy, Currettage of C4, subtotal resection
Stabilisation with rods and screws. Note: no ipsilateral rod

Residual TUMOR
Chordoma of the Cervical Spine
Chordoma of the Cervical Spine

Patient: V.Y. 63 y.o. M;
Chordoma of the Cervical Spine

Patient: V.Y. 63 y.o.

Total dose: 75.6 Gy(RBE) at 1.8 / frct.
Chordoma of the Cervical Spine

Patient: V.Y. 63 y.o.

Total dose: 75.6 Gy(RBE) covers 82%; 71.8 Gy(RBE) = 95% Iso covers 92%